Proximal point algorithms for nonsmooth convex optimization with fixed point constraints

نویسنده

  • Hideaki Iiduka
چکیده

The problem of minimizing the sum of nonsmooth, convex objective functions defined on a real Hilbert space over the intersection of fixed point sets of nonexpansive mappings, onto which the projections cannot be efficiently computed, is considered. The use of proximal point algorithms that use the proximity operators of the objective functions and incremental optimization techniques is proposed for solving the problem. With the focus on fixed point approximation techniques, two algorithms are devised for solving the problem. One blends an incremental subgradient method, which is a useful algorithm for nonsmooth convex optimization, with a Halpern-type fixed point iteration algorithm. The other is based on an incremental subgradient method and the Krasnosel’skĭı-Mann fixed point algorithm. It is shown that any weak sequential cluster point of the sequence generated by the Halpern-type algorithm belongs to the solution set of the problem and that there exists a weak sequential cluster point of the sequence generated by the Krasnosel’skĭı-Mann-type algorithm, which also belongs to the solution set. Numerical comparisons of the two proposed algorithms with existing subgradient methods for concrete nonsmooth convex optimization show that the proposed algorithms achieve faster convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization

We analyze stochastic algorithms for optimizing nonconvex, nonsmooth finite-sum problems, where the nonsmooth part is convex. Surprisingly, unlike the smooth case, our knowledge of this fundamental problem is very limited. For example, it is not known whether the proximal stochastic gradient method with constant minibatch converges to a stationary point. To tackle this issue, we develop fast st...

متن کامل

Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone

In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.

متن کامل

Accelerated Proximal Gradient Methods for Nonconvex Programming

Nonconvex and nonsmooth problems have recently received considerable attention in signal/image processing, statistics and machine learning. However, solving the nonconvex and nonsmooth optimization problems remains a big challenge. Accelerated proximal gradient (APG) is an excellent method for convex programming. However, it is still unknown whether the usual APG can ensure the convergence to a...

متن کامل

Lecture 20 : Splitting Algorithms

In this lecture, we discuss splitting algorithms for convex minimization problems with objective given by the sum of two nonsmooth functions. We start with the fixed point property of such problems and derive a general scheme of splitting algorithm based on fixed point iteration. This covers Douglas-Rachford splitting and Peaceman-Rachford splitting algorithms. We also discuss the convergence r...

متن کامل

The proximal distance algorithm

The MM principle is a device for creating optimization algorithms satisfying the ascent or descent property. The current survey emphasizes the role of the MM principle in nonlinear programming. For smooth functions, one can construct an adaptive interior point method based on scaled Bregman barriers. This algorithm does not follow the central path. For convex programming subject to nonsmooth co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 253  شماره 

صفحات  -

تاریخ انتشار 2016